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The concept of an effective Rayleigh number (for a clear fluid), or effective Rayleigh-Darcy 
number (for a porous medium), is introduced in the context of convection in a vertically 
inhomogeneous horizontal layer. Estimates for this quantity, based on mean values of the 
physical quantities, are proposed. These estimates are compared with known, accurate 
results. 
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1. Introduction 

In the introduction of their recent paper, Leu and Jang (1993, 
p. 203) (see also Jang and Leu 1993) wrote 

Kassoy and Zebib (1975) examined the variable 
viscosity effects on the onset of convection in a 
water-saturated porous medium. The critical 
Rayleigh number is found to be substantially 
reduced from the classical value of 4n 2. Straus and 
Schubert (1977) and Horne and O'Sullivan (1978) 
have also considered the onset of convection of 
water as a non-Boussinesq fluid with viscosity and 
thermal expansivity dependence. The critical 
Rayleigh number is reduced by as much as a 
factor of 31 below the classical value of 4n 2. 

From this, the reader may be given the impression that 
property variation can have a destabilizing effect. Indeed, in 
their own paper, which is concerned with vortex instability in 
a free-convection boundary-layer flow, Leu and Jang (1993, p. 
203) reported that the "numerical results indicate that the 
variable viscosity effect enhances the heat transfer and 
destabilizes the flow." This is misleading. It is just a reduction 
in viscosity relative to a fixed value that is involved in their 
paper. Common sense indicates that if the Rayleigh number is 
redefined in terms of some suitable intermediate viscosity, then 
the numerical value of the critical Rayleigh should be unaltered, 
so there is no destablization per se. This raises the questions 
of whether the intermediate viscosity can be estimated by some 
appropriate mean value (some authors have used the arithmetic 
mean and others have used the viscosity coresponding to the 
midplane temperature) and the degree to which the distribution 
about its mean value affects the criterion for instability. 

The present investigation is an attempt to answer these and 
other questions. It is concerned with convection induced by 
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vertical temperature gradients in either a porous medium or a 
clear (of solid material) fluid. For  flow in porous media, relevant 
papers (in addition to those mentioned earlier) include those 
by Morland et al. (1977), Blythe and Simpkins (1981), Patil and 
Vaidyanathan (1981 and 1982), Or (1989) on viscosity variation, 
and the studies of layered porous media reviewed by McKibbin 
(1985) and Nield and Bejan (1992, Section 6.13). For flow in 
clear fluids, the literature is extensive. Of particular relevance 
to the effects of viscosity variation are the pioneering studies 
of Palm (1960) and Jenssen (1963) and the comprehensive study 
by Stengel et al. (1982). 

This investigation is directed to the broad question of general 
property variation but, because of the availability of previous 
studies, viscosity variation is emphasized later in this paper. 
The investigation is guided by analytic results obtained from 
a two-layer model. This discrete model provides a rough 
analogy to the continuous situation. The two-layer model was 
chosen because it is adequate to reveal the complexity of the 
interaction between the various property variations, while at 
the same time it is sufficiently simple for general conclusions to 
be drawn from the results. (A three-layer model for a clear fluid 
leads to an excessive amount of algebra. The author has carried 
out an analysis of the three-layer model for a porous medium, 
but the results are so complicated that they do not provide 
significant additional aid for the task of estimating an effective 
Rayleigh-Darcy number for a general situation.) 

2. A two-layer model 

We consider Brnard convection in two superimposed 
horizontal layers of either porous media or clear fluids. (For 
the porous media, Darcy's law is assumed to hold.) Subscripts 
1 and 2 refer to the lower and upper layers, respectively, of 
depths dl and d 2. The lower boundary is uniformly heated and 
rigid. We consider, separately, the cases in which the upper 
boundary is rigid or free. In each case, the perturbation heat 
flux at both boundaries is taken to be zero; this ensures that 
the critical horizontal wave number is zero and permits a 
simple analytical solution. Standard linear stability analysis, 

Int. J. Heat and Fluid Flow, Vol. 15, No. 4, August 1994 337 



Ra estimation for convection in porous medium or clear fluid: D. A. Nield 

following the procedure described by Nield (1977), leads to the 
following criteria for the onset of convection. Here 

E= = gctK/v, F m = kraft/iota 

2. I .  Po rous  med ia  

Case l a. porous media; both boundaries impermeable." 
2 2 [EmlFml(d~ + 4d3d2) + 3(EralFra2 + Era2Fml)dld2 

+ Em2Fm2(4dld~ + d~)]/[(k, ldl + km2d2)(dl + dE)] 

= 12 (1) 

Case lb. porous media; lower boundary impermeable, upper 
boundary at zero perturbation pressure: 

[2EmlF~ad~ + 3(EmlFm2 + EmzFlm)d2d2 

+ E2mF2~(6dad32 + 2d~)]/2(k,~dl + km2d2) = 3 (2) 

The expressions on the left-hand side of Equations 1 and 2 are 
effective Rayleigh-Darcy numbers. For  the homogeneous case 
(0~1 = 0~2 = ~ '  f l l  = f12 = f l '  l('ral = Kra2 = l~rn' 1)1 = F2 -~" V, kin1 = 

kin2 = kra , K t = K 2 = g), they each reduce to g~flKdE/Kmv, 
where d = d 1 + d 2 ,  s o  that Equation 1 gives R m = 12 and 
Equation 2 gives Rm = 3. These, as expected, are the values of 
the critical Rayleigh-Darcy numbers found by Nield (1968). 

Clearly, the general case is complicated. In particular, there 
is a coupling between thermal quantities grouped into the Fm~ 
factors and the hydrodynamic quantities grouped into the E~  
factors. Obviously, there is no simple exact universal formula 
for the effective Rayleigh-Darcy number in a general situation. 
In fact, the true effective Rayleigh number depends on the 
distribution of the varying property or properties. The aim here 
is to provide a useful estimate (which is independent of the 
particular distribution) of this quantity. 

Consider, for simplicity, the situation when d 1 = d E = d/2. 
(Conclusions will be drawn that are, it is believed, qualitatively 
independent of this simplification.) Consider first Case la, an 
example of symmetric boundary conditions (same conditions 
at the top as at the bottom for the perturbation problem). For 
the case of thermal homogeneity (ill = fie = fl, xml = Kra2 ~ l~ra' 
kmx = kin2 = k m, so that Fm~ = F,2) the correct two-layer, 
effective Rayleigh-Darcy number is obtained if (E,a + E~2)/2 is 
taken as the value of the group E,. in the Rayleigh-Darcy 
number definition. This suggests that, in a general situation, 
the best choice of average for Em is the arithmetic mean (EmA) 
for the case of symmetric boundary conditions. In particular, 

if the viscosity v is the only inhomogeneous quantity, then the 
harmonic mean (vn) should be the best choice for average 
viscosity. In general, an estimate for E A is gctaKA/v n. Similarly, 
for the case of hydrodynamic homogeneity (cq = ct 2 = c~, 
v 1 = v 2 = v, K t = K 2 = K, so that Era1 = E r a 2 ) ,  Equation 1 
suggests that the best choice of F~/km is F~a/kmn. Continuity 
of heat flux requires that kfl = constant, and this, together with 
the fact that A T =  flA d, implies that FmA = (kmu/Xmn)AT/d. It 
follows that an estimate for the Rayleigh number R m is given by 

get A K A dA T 
Rmest - (3) 

VH KmH 

The reader will note that arithmetic means of quantities appear 
in the numerator of this expression and harmonic means in the 
denominator. 

In order to estimate the order of accuracy involved in the 
estimation, the author has investigated the case of a single layer 
of porous medium, homogeneous except for viscosity variation, 
between impermeable conducting boundaries, using the same, 
second-order Galerkin approximation employed by Nield 
(1990). The results showed that the estimated Rayleigh-Darcy 
number based on the harmonic mean of the kinematic viscosity 
(as in Equation 3) is independent of the slope of the viscosity 
variation function, but is dependent on its curvature. In fact, 
the estimated Rayleigh-Darcy number is too large by a factor 
1 + 6, where an estimate of the quantity fi (assumed to be small) 
is given by 

vd 2 d2(v- 1) 
6 ~  

42 dz 2 

Now consider Case lb, again with d~ = d 2 = d/2. For the 
thermally homogeneous case, the left-hand side of Equation 2 

11 2 reduces to (~E,,x + izE,,,2)F,.d/km. NOW a weighted arith- 
metic mean is involved, the layer nearer the less restrictive 
boundary having the greater weight. For  the hydrodynam- 
ically homogeneous case, the same expression reduces to 

lX 2 Em(~F , ,  + ~Fm2)d /km. 
This suggests that Rm=st be obtained as before, using 

Equation 5, but now the various means being obtained using 
an appropriate weighting factor. For  Case lb, the weighting 
factor is 11:5. This suggests that in the general case, with 
nonsymmetric boundaries, a weighting factor on the order of 
2:1 may be suitable, but since this factor depends on the 
boundary conditions, further investigation is needed for the 
selection of the best value. 

Notation 

d Layer depth (m) 
E g=/v (m- 1 s -  1 K -  1) 
Em go~K/v (m s -  1 K -  1) 
F kfl/x (W m-4  s) 
Fm kfl/Xm (W m-4  s) 
g Gravitational acceleration (m s-2) 
k Thermal conductivity (W m -  1 K -  1) 
R Rayleigh number (g=fld4/rv) 
Rm Rayleigh-Darcy number (g~flKdZ/rmv) 
T Temperature (K) 
z Vertical coordinate (m) 

Greek symbols 

ct Volume expansion coefficient (K-1) 

6 
A 
g 

K 

V 

P 

Temperature gradient (m-1 K) 
Fractional error 
Difference across the layer 
Viscosity variation amplitude 
Thermal diffusivity (m 2 s-1) 
Dynamic viscosity (kg m - t s -  1) 
Kinematic viscosity (#/p), (m 2 s -  1) 
Density (kg m -  3) 

Subscripts 

1 Lower layer 
2 Upper layer 
A Arithmetic mean 
G Geometric mean 
H Harmonic mean 
m Porous medium 
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2.2.  C lea r  f l u i ds  

Using a two-layer model, the following criteria for neutral 
stability are obtained. Here, E = gct/v and F = kfl/x. 

Case 2a. clear fluids ; both boundaries rigid: 

[E~FI{#2/#Od 9 + 9dad2 + 36d7d 2 + 64d6da~ + 36(#l//~2)d~d~} 

+ E1F2{lOd6d a, + 45d~d~ + 45(#l/l~2)d~d ~ + 36(t~/#2)d~d 6} 

+ E2Fl{lO(l~2/#l)d6d~ + 45(#2/lq)d~d) + 45d~d 5 + 10d~ad26} 
1 8 + E2F2{36(l~2/#l)d~d~ + 64d~d 6 + 36d2d72 + 9did2 

+ (l~/It2)d9}]/[(kld~ + k2d2){(l~2/l~l)d~ + 4dad2 + 6d2d 2 

+ (/q/#2)d~}] - 720 (4) 

Case 2b. clear fluids ; lower boundary rigid, upper boundary free: 

[E,Fx{3d~ + 24d~d2 + 64d6d 2 + 48(lq/l~2)d5d 3} 

+ Eir2{lOd6d 2 + 60d~d a , + 75(l~l/lt2)d~d~ + 20(#~/l~2)d~da2} 

+ E2Fl(10(It2/#l)d6d 2 + 60(l~2/t~l)d~da~ + 75d~d~ + 20d~ad2 ~} 

+ E2F2{60(l~2/l~)d~d~ + 128d3d25 + 84d2d 6 + 27dld72 

+ 3(#l/l~2)d~}]/[3(kld ~ + k2d2){d a + 3d2d2 + 3dld 222 

+ (#1/#2)d23}] = 320 (5) 

For  the homogeneous situation, the expressions on the 
left-hand side of Equations 4 and 5 each reduce to the Rayleigh 
number R as usually defined and so, in general, they can be 
regarded as effective Rayleigh numbers. The values 720 and 
320 are well-known critical values--they were first obtained by 
Sparrow et al. (1964). 

Now the viscosity ratio appears explicitly, as well as being 
involved implicitly, via E 1 and E 2. From now on, it will be 
assumed that #2/#1 is sufficiently close to unity so that the 
explicit dependence (which involves only certain terms in a sum 
of terms) is relatively unimportant. Consider the case where 
dl = d 2 = d/2. The form to which Equation 4 reduces suggests 
that, for the general case with symmetric boundary conditions, 
one should estimate E, F and k by their arithmetic means, and, 
consequently, estimate R by 

grZ A d3A T 
R=,, - - -  (6) 

~H KH 

On the other hand, when dl = d2 = d/2, the left-hand side of 
Equation 5 reduces, for the thermally homogeneous case, to 
(~E~19 + ~E2)Fd4/k and, for the hydrodynamically homogen- 
eous case, to 19 29 4. E ( ~ F  1 + ~ F 2 ) d / k .  This suggests that in the 
general case with nonsymmetric boundary conditions, a 
weighting factor of the order of 3:2 may be suitable. 

We see that using vA gives a result that is too small and using Vn 
gives (as expected) a result that is too large. One is led to 
speculate that using the geometric mean v~ might give a 
better result. Indeed, since in this case vG = % ( 1 -  82/2) 1/2, 
the estimated effective Rayleigh number is approximately 
Re(1 + 0.2582), in very good agreement with the results of Palm. 

Jenssen (1963) repeated the analysis of Palm, using the 
same viscosity variation, but now for the cases of (i) two rigid 
conducting boundaries, and (ii) one rigid conducting boundary 
and one free conducting boundary. For case (i), he found 
the critical Rayleigh number to be given by Re = 
1708(1-  0.24782), which means that the effective Rayleigh 
number is Re/(1 - 0.24782) ~ Re(1 + 0.24782). This agrees 
remarkably well with the estimate Re(1 + 0.2582) based on vG. 
For  case (ii), he found the critical Rayleigh number to be 
given by R e - - 1 1 0 0 . 6 ( 1 -  0.3628), which means that the 
effective Rayleigh number is Re/(1 - 0.3628) ~ Re(1 + 0.3628). 
A weighting ratio of 3:2 and the harmonic means for the two 
layers of depth d/2 leads to the estimate Re(1 + 0.1278). The 
same weighting ratio, but with geometric means, leads to the 
same result, to the first order in 8. In order to reproduce 
Jenssen's result, one must use 3.64:1 as the weighting ratio. 

The adaptation of the Palm-Jenssen theory to a porous 
medium (rather than a clear fluid) was made by Patil and 
Vaidyanathan (1981). Their results for the critical Rayleigh 
number are given in column 3 of Table 1. In column 4, we have 
listed the calculated value of the constant c defined by 

R = Re(1 - c82) (7) 

The table shows that their results can be fitted by Equation 7 
and that c varies from about 0.188 (compared with the value 
0.193 obtained by Palm [19601) in the clear fluid limit 
(K/d E - ,  co) to about 0.266 in the Darcy limit (K/d 2 ~ 0). The 
estimate given by Equations 3 or 6 would lead to Equation 7 
with c = 0.5 (if a harmonic mean value for the viscosity is used) 
or c = 0.25 (if a geometric mean value for the viscosity is used), 
independent of the value of Kid 2. [The fact that Patil and 
Vaidyanathan presented results for 8 = 0.5, which is formally 
inconsistent with the assumption that 8 is small compared with 
unity, does not affect the present comparison.] 

Unfortunately, the results of Kassoy and Zebib (1975) cannot 
be used for comparison here because they appear to be 
anomalous in two respects. Firstly, they predict that the critical 

Table I Analysis of the results of Patil and Vaidyanathan (1981 ). 
Their calculated values of the critical Rayleigh number are listed in 
the third column. For each value of the Darcy number K/d 2, R o is 
the corresponding value of R when ~ = 0. The Rayleigh-Darcy 
number Rm is related to R by Rrn = RK/d 2. 

3.  C o m p a r i s o n  w i t h  k n o w n  r e s u l t s  

The pioneering work on the effect of viscosity variation on 
Rayleigh-Brnard convection is by Palm (1960). He treated the 
idealized case where the kinematic viscosity varies with vertical 
coordinate z according to v = %(1 + e cos nz), for 0 < z < 1, 
where v o and e are positive constants, e << 1. Palm con- 
sidered the case of conducting stress-free boundaries. He 
found that Re, the critical Rayleigh number based on 
the kinematic viscosity Vo, varied with e according to Re = 
27~z4/4(1- 0.25982). This means that the effective Rayleigh 
number is Re/(1 -- 0.25982) ,~ Re(1 + 0.25982). The estimated 
effective Rayleigh number based on the arithmetic mean v A is 
just Re. The estimated effective Rayleigh number according to 
Equation 6 (i.e., that based on the harmonic mean vn, which 
is found to be Vo(1 - -  82)  1/2) is Re/(1 - 82) 1/2 ~ Re(1 + 0 .582 ) .  

K/d 2 e R (R o - R)/Ro 82 

oo 0.0 657.511 
0.1 656.272 0.188 
0.5 626.568 0.188 

0.5 0.0 745.443 
0.1 744.049 0.187 
0.5 710.636 0.187 

0.01 0.0 4699.14 
0.1 4688.35 0.230 
0.5 4431.46 0.228 

0.0001 0.0 394785.1 
0.1 393729.0 0.266 
0.5 368709.7 0.264 

0.00001 0.0 3947841 
0.1 3937274 0.267 
0.5 3686713 0.265 
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horizontal wave number increases as the amount  of viscosity 
variation (due to change in temperature) increases, whereas all 
other reports known to the author  predict a decrease. Secondly, 
their results are internally inconsistent because the indicated 
limit of the Rayleigh number  as their parameter  z tends to zero 
is markedly different from the value for z equals zero. It is 
planned that a reexamination of their problem will be the 
subject of a future report. 

The author  does not  know of any published experimental 
data that are appropriate for comparison. 

4. Conclusion 

The concept of an effective Rayleigh number  (or Rayleigh- 
Darcy number) has been introduced in the context of the 
criterion for the onset of Rayleigh-B6nard convection. Whether  
the concept is useful for convection at supercritical Rayleigh 
numbers (in the determination of heat flow, for example) is a 
subject for future investigation. Provided the variation of a 
property lies within one order of magnitude, a useful 
rough-and-ready estimate of an effective Rayleigh number is 
readily obtained. No  claim is made about  the situation in which 
a property varies by several orders of magnitude, as in the 
experiments reported by Stengel et al. (1982). A large variation 
may lead to the flow being localized in part of the layer and 
the effective Rayleigh number as introduced here is a global 
quantity. 
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